降低接地电阻的措施: 降低接地电阻的措施: 在电阻系数较高的土壤(如岩石、砂质及长期冰冻的土壤)中,要满足规定的接 地电阻是有困难的,为降低接地电阻可采取下列措施: 1、采用电阻系数较低的黏土、黑土及砂质土代替原有电阻系数较高的土壤,一 般换掉接地体上部 1/3 长度,周围 0.5 米以内的土壤. 2、 对含砂土壤可增加接地体的埋设深度.深埋还可以不考虑土壤冻结和干枯所增 加电阻系数的影响. 3、 对土壤进行人工处理,一般采取在土壤中适当加入食盐,根据实验结果,用食盐 处理土壤后,砂质黏土的电阻减小 1/3~1/2,砂土的电阻减少 3/5~3/4,砂的电阻 可减小 7/9~7/8,对于多岩土壤,用 1%食盐溶液浸渍后,其导电率可增加 70%,花岗 岩的导电率可增加 1200 倍.但土壤经人工处理后,会降低接地体的热稳定性,加 速接地体的腐蚀,减少接地体使用年限.因此,凡可以用自然方法达到接地电阻时, 一般不采用人工处理的方法. 4、对于冻结的土壤在进行人工处理后,还达不到要求时,最好把接地体埋在建筑 物的下面,或在冬天采用填泥炭的方法。
三相四线制中性点接地的电网应采用保护接零的措施。 凡是由于绝缘破坏或其他原因而可能呈现危险电压的金属部分都应该采 取接地或接零。应采取接地或接零的设备 1)电机、变压器、电器、照明器具、携带式及移动式电器具等的金属外壳、底座及与其相连的传动装置。 2)户内外配电装置的金属构架或钢筋混凝土构架以及靠近带电部分金属遮栏、 围栏或金属门。 3)配电屏、控制台、控制台、控制箱的金属框架或外壳。 4)互感器的二次绕组。 5)交直流电力电缆接线盒的金属外壳、电缆的金属外皮和配线)装有避雷线的电力线路金属杆和钢筋混凝土杆塔。 6)装在配电线路杆上的开关、电容器等电气设备。
地下主接地极采用耐腐蚀钢板制作,面积大于0.75平米,厚度大于5mm;本地接地杆采用两根镀锌铁管,长度大于1米,直径大于22毫米。每根管子上至少应钻10个直径大于5毫米的通孔。两根铁管应垂直于地面,偏差小于15°,必须埋在潮湿的位置。两根管子之间的距离大于5m,垂直埋深大于0.75m;接地电极周围比较干燥,充满沙子,木炭和盐混合物或长效减阻剂;根据体积比1,砂与盐的比例约为60×177磅。
沟槽开挖:根据设计图要求,对接地体(网)的线路进行测量弹线m 的沟槽,沟顶部稍宽,底部渐窄,沟底如有 石子应清除。沟槽开挖后应立即安装接地体和敷设接地扁钢, 防止土方倒塌。 先将接地体放在沟槽的中心线上,打入地下。一般采用大锤打入, 一人扶着接地体,一人用大锤敲打接地体顶部。使用大锤敲打接地体时要平稳, 锤击接地体正中,不得打偏,应与地面保持垂直、当接地体顶端距离地面 600mm 时停止打入。
佰利嘉电气以“创国内一流防雷公司,为客户提供优质服务”为宗旨,构建“以人为本、以诚取信、以严保安、以实求精”的经营理念,树立“诚信、效益、卓越、和谐”的公司精神,努力创造辉煌的业绩,回馈社会。
当强大直流电流经接地极注入大地时,在极址土壤中形成一个恒定直流电磁场并伴随出现大地电位升高、地面跨步电压、接触电势等。热力效应由于不同土壤电阻率的接地极呈现出不同的电阻率值, 在直流电流的作用下,电极温度将升高。当温度升高到一定程度时,土壤中的水分将可能被蒸发掉,土壤的导电性能将会变差,电极将出现热不稳定,严重时将可使土壤烧结成几乎不导电的玻璃状体,电极将丧失运行功能。
防雷是人类抗衡大自然灾害的一种方式,随着城市化进程的加大,高楼平地起,越来越多的工厂设施搭建,除了消防抗震,就是防雷了,防雷要铺设接地极(体)。关系着高压直流输电系统的安全运行,对于附近的交流系统也有影响,其中的一些问题也十分值得研究。通过求解该模型,可找出优化的均流电阻组合方案,使接地极的性能得到优化。为合理设计直流接地极系统,用数值分析法计算了高压直流输电直线型接地极系统各电气性能参数,讨论了不同模型、电流注入方式等对接地系统电气参数的影响。
在海岸和海水环境中,石墨电极的寿命取决于浸渍剂保护作用时间的长短,因而限制了这种材料的使用。新西兰岸边接地极在运行9年后,用高硅铸铁更换了已损坏的石墨电极。 目前,在阴极保护业中,国内外基本上都用高硅铸铁替代石墨电极,因为高硅铸铁也是一种理想阳极材料,且抗腐蚀性优于石墨电极。
防雷装置的各种支架顶部应距建筑物表面 100mm;接地干线支架水平间距不大于 1m(混凝土支座不大于 2m);垂直间距不大于 1.5m,各间距应均匀,允许偏差 30mm。转角处两边的支架距转角中心不大于 250mm。