是消除电磁场对人体危害的有效措施,也是防止电磁干扰的有效措施。高频技术在电热、医疗、无线电广播、通信、电视台和导航、雷达等方面得到了广泛应用,人体在电磁场作用下,吸收的辐射能量将发生生物学作用,对人体造成伤害,如手指轻微颤抖、皮肤划痕、视力减退等。对产生磁场的设备外壳设屏蔽装置,并将屏蔽体接地,不仅可以降低屏蔽体以外的电磁场强度,达到减轻或消除电磁场对人体危害的目的,还可以保护屏蔽接地体内的设备免受外界电磁场的干扰影响。
佰利嘉电气专业从事离子接地极、电解离子接地、缓释型接地装置、杆塔接地装置、石墨基柔性接地体、铜覆钢接地极、放热焊接、玻璃钢避雷针、接地模块产品开发、生产、销售。随着公司业务范围的不断扩大,管理体系日趋完善,经过公司员工的不懈努力,已经逐步形成了一个以大专院校、科研、设计单位教授、专家为技术力量,集科研、生产、销售为一体的现代化企业。公司实验及检验设备齐全、生产工艺先进、质量保证体系完善。
一般指接地体上的工频交流或直流电压与通过接地体而流入地下的电流之比。散泄雷电冲击电流时的接地电阻指电压峰值与电流峰值之比,称为冲击接地电阻。接地电阻主要是电流在地下流散途径中土壤的电阻。接地体与土壤接触的电阻以及接地体本身的电阻小得可以忽略。电网中发生接地短路时,短路电流通过接地体向大地近似作半球形流散(接地体附近并非半球形,流散电流分布依接地体形状而异)。图中画出了与电流垂直的等位线,越接近接地体的等位线其电位越高。因为球面积与半径平方成正比,所以流散电流所通过的截面随着远离接地体而迅速增大。因电阻与电流通道的截面积成反比,故同半球形面积对应的土壤电阻随着远离接地体而迅速减小。一般情况下,接地装置散泄电流时,离单个接地体20米处的电位实际上已接近零电位。
接地母线的一端要直接与后面将要介绍的接地干线连接,另一端当然是与本楼层配线架、配线柜、钢管或金属线槽等设施所连接的接地线连接。它属于一个中间层次,比接地线高一个层次,而比接地干线又要低一个层次。
有宽阔并且导电性能良好(土壤电阻率低)的大地散流区,尤其是在极址附近范围内,土壤电阻率应在100Ωm以下。这对于降低接地极造价,减少地面跨步电压和保证接地极安全稳定运行起着十分重要的作用。
在海岸和海水环境中,石墨电极的寿命取决于浸渍剂保护作用时间的长短,因而限制了这种材料的使用。新西兰岸边接地极在运行9年后,用高硅铸铁更换了已损坏的石墨电极。 目前,在阴极保护业中,国内外基本上都用高硅铸铁替代石墨电极,因为高硅铸铁也是一种理想阳极材料,且抗腐蚀性优于石墨电极。
降低接地电阻的措施: 降低接地电阻的措施: 在电阻系数较高的土壤(如岩石、砂质及长期冰冻的土壤)中,要满足规定的接 地电阻是有困难的,为降低接地电阻可采取下列措施: 1、采用电阻系数较低的黏土、黑土及砂质土代替原有电阻系数较高的土壤,一 般换掉接地体上部 1/3 长度,周围 0.5 米以内的土壤. 2、 对含砂土壤可增加接地体的埋设深度.深埋还可以不考虑土壤冻结和干枯所增 加电阻系数的影响. 3、 对土壤进行人工处理,一般采取在土壤中适当加入食盐,根据实验结果,用食盐 处理土壤后,砂质黏土的电阻减小 1/3~1/2,砂土的电阻减少 3/5~3/4,砂的电阻 可减小 7/9~7/8,对于多岩土壤,用 1%食盐溶液浸渍后,其导电率可增加 70%,花岗 岩的导电率可增加 1200 倍.但土壤经人工处理后,会降低接地体的热稳定性,加 速接地体的腐蚀,减少接地体使用年限.因此,凡可以用自然方法达到接地电阻时, 一般不采用人工处理的方法. 4、对于冻结的土壤在进行人工处理后,还达不到要求时,最好把接地体埋在建筑 物的下面,或在冬天采用填泥炭的方法。
佰利嘉电气始终秉承“创新、求实、合作、共赢”的企业经营理念,产品行销世界各地,广泛应用于核电、风电、水电、移动通信、国脉通信、雷达站、电力、石油、国防军工、铁路等大型工程。
室外接地干线敷设支持件的固定;支持件应采用 40mm×4mm 的扁钢,尾端应制成燕尾 状,入孔深度与宽度各为 50mm、总长度为 70mm。其具体固定方法如下:砖墙、加 气混凝土墙、 空心砖墙上固定:根据设计要求先在墙上确定轴线位置,然后随砌墙 将预制成 50mm×50mm 的方木样板放人墙内,待墙砌好后将方木样板剔除,然后将 支持件放入孔内,同时洒水淋湿孔洞,再用水泥砂浆将支持件埋牢,待凝固后使 用。 现浇混凝土墙上固定:先根据设计图要求弹线定位、钻孔,支架做燕尾埋入孔中, 调平正,用水泥砂浆进行固定。
佰利嘉离子接地极为直径63的铜管组成,每节0.5-1m,有多个呼吸排泄孔,同管内填有无毒化合物晶体,铜管埋入地下后,呼吸孔吸收土壤中的水分,化学晶体变为电解溶液,又从该孔中排出,这些溶液在特殊回填土的吸取作用下,均匀流入土壤,在土壤中形成了成片导电率良好的电解离子土壤。特别是在石山上土壤少的地区,电解液可向石山的纵方向渗透,使原来导电率极差的高山地质结构,形成了一个良好的电解质导电通道。很大程度的减少了接地极与周围土壤之间的泄流。